VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester (Bridge Course) Advanced Suppl. Examinations, Aug./Sep.-2023 Matrix Theory and Vector Calculus

(Common to Civil & Mech.)

Time: 3 hours

Max. Marks: 50

Note: Answerallquestions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	If $U = f(x, y, z)$ where x, y and z are functions of r and s, then write the chain rule.		1	1.	1,12
2.	Evaluate $\int \sin 2x \cdot \cos x dx$	2	1	1	1,12
3.	Define Solenoidal and Irrotational vector.	2	1	2	1,12
4.	If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$ and $r = \bar{r} $, then find $\nabla(r^3)$.		2	2	1,12
5.	State Gauss Divergence theorem.		1	3	1,12
6.	Evaluate $\int_{1}^{2} \int_{x}^{x^{2}} dy dx$		2	3	1,12
7.	Write the condition for consistence of Non-homogeneous system of equations.		1	4	1,12
8.	Define Eigen value and Eigen vector of a matrix.	2	1	4	1,12
9.	If $x + y + z = logz$, then find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.		2	1	1,12
10.	Write the geometric Interpretation of Gradient.	2	1	2	1,12
	Part-B $(5\times6=30 \text{ Marks})$				
11.	If $U = f(\frac{y-x}{xy}, \frac{z-x}{xz})$, then show that $x^2 \frac{\partial U}{\partial x} + y^2 \frac{\partial U}{\partial y} + z^2 \frac{\partial U}{\partial z} = 0$.	6	3	1	1,12
12. a)	Find the directional derivative of $f = x^2 - y^2 + 2z^2$ at the point $A(1, 2, 3)$ in the direction of the vector $4i + 2j + k$.		3	2	1,12
b)	Find the curl of $\overline{F} = (x^2yz)\overline{i} + (xy^2z)\overline{j} + (xyz^2)\overline{k}$ at $(1, 2, 3)$	3	2	2	1,12
13.	Apply Green's theorem to find work done $\int_c \bar{F} \cdot d\bar{r}$ in moving particle in the force field $\bar{F} = (3x - 8y^2)\bar{\iota} + (4y - 6xy)\bar{\jmath}$ along the curve C.where C is bounded by $x = 0$, $y = 0$ and $x + y = 1$.	6	3	3	1,12

Code No.: 14712 AS N/O

14. a)	Find Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	4	3	4	1,12
1	Write any two elementary Row transformations of a matrix	2	1	4	1,12
	If $Z = tan^{-1} \left(\frac{y}{x}\right)$, then Verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$	3	2	1	1,12
b)	Find the values of a & b such that the surface $ax^2 - byz = (a + 2)x$ and	3	3	2	1,12
16. a)	Apply Stoke's theorem to evaluate $\int_c \bar{F} . d\bar{r}$ for the vector field $\bar{F} = (2x - y)\bar{\iota} - (yz^2)\bar{j} - (zy^2)\bar{k}$ over the upper half of the surface	3	3	3	1,12
b)	$x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy-plane. Solve the system $3x + y + 2z = 3$, $2x - 3y - z = -3$, $x + 2y + z = 4$.	3	2	4	1,12
17.	Answer any two of the following:				1.1
a)	Evaluate $\int_0^a \frac{x^7}{\sqrt{(a^2-x^2)}} dx$	3	2	1	1,1
b)	If $\bar{F} = 3y^4z^2\bar{\iota} + 4x^3z^2\bar{\jmath} + 3y^2x^2\bar{k}$, then find $\nabla \times \bar{F}$ at $(1, -2, 0)$	3	2	2	1,1
c	Evaluate $\int_0^2 \int_1^3 \int_1^2 xy^2z \ dzdydx$	3	2	3	1,1

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I. Dloom's	Favonomy Level:	CO; Course Outcome;	PO: Programme	
M : Marks;	L: Bloom s	Blooms Taxonomy Level – 1		24.62%	
	1)	Blooms Taxon	nomy Level – 2	36.92%	
	11)	Blooms Taxor	nomy Level – 3 & 4	38.46%	
	iii)	Bioonis Taxor	ionij zv.v.		
